Why Browser Engines #
Real Desktop Browsers %
Mobile Browsers

David Burns - @AutomatedTester



Agenda

« Specifications...

« Levels of ‘real-user’ testing

« Headless vs headful testing: Technicalities and examples

. Browser engines vs real browsers: Technicalities and examples

« Real mobile browsers vs simulated browsers: Technicalities and
examples

.« Q&A



Specifications



RFC2119



Status of this Memo

This document specifies an Internet Best Current Practices for the
Internet Community, and requests discussion and suggestions for
improvements. Distribution of this memo is unlimited.

Abstract

In many standards track documents several words are used to signify
the requirements in the specification. These words are often
capitalized. This document defines these words as they should be
interpreted in IETF documents. Authors who follow these guidelines
should incorporate this phrase near the beginning of their document:

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
RFC 2119.

Note that the force of these words is modified by the requirement
level of the document in which they are used.

1. MUST This word, or the terms "REQUIRED" or "SHALL", mean that the
definition is an absolute requirement of the specification.

2. MUST NOT This phrase, or the phrase "SHALL NOT", mean that the
definition is an absolute prohibition of the specification.

3. SHOULD This word, or the adjective "RECOMMENDED", mean that there
may exist valid reasons in particular circumstances to ignore a
particular item, but the full implications must be understood and
carefully weighed before choosing a different course.

4. SHOULD NOT This phrase, or the phrase "NOT RECOMMENDED" mean that
there may exist valid reasons in particular circumstances when the
particular behavior is acceptable or even useful, but the full
implications should be understood and the case carefully weighed
before implementing any behavior described with this label.



Real User Testing



Real User Testing

https://www.pexels.com/photo/person-holding-prosthetic-arm-3912979/




https://www.pexels.com/photo/1-1-



Why does this
matter?



Headless vs headful
testing



Mathias Bynens &
: 2%
Did you know that “old” Chrome Headless (2017-2023) was a separate,
alternate browser implementation that just happened to be shipped as
part of the same Chrome binary? @ It doesn’t share any of the Chrome
browser code in //chrome!

Say hello to --headless=new in Chrome 112!

Chrome Developers %

(NGRS 0
Chrome’s Headless mode just got a whole lot better! We made
Headless more useful for developers by bringing it closer to Chrome’s
regular “headful” mode.

@ developer.chrome.com/articles/new-h...

Chrome

headful headless
code path code path

Chrome

head({ful,less}
shared code path







Browser engines vs
real browsers






~ Safari Technology Preview




Bad Apple Safari update breaks IndexedDB
JavaScript API, upsets web apps

Developers fed up with iGiant neglecting non-native software

A Thomas Claburn Wed 16 Jun 2021 07:29 UTC

Apple's WebKit team has managed to break the popular IndexedDB JavaScript APl in
the latest version of Safari (14.1.1) on macOS 11.4 and iOS 14.6.

The bug, first reported on June 2, 2021, only manifests when applications first try to use
IndexedDB NoSQL manager to store data. Reloading a web page or app implementing
the API resolves the issue, according to several bug reports.

Nonetheless, the situation is less than ideal for web developers and for anyone using the
desktop or mobile versions of Safari. While there are a variety of storage APIs available
to web developers, IndexedDB is one of two (the other being the Cache Storage API)
that's recommended; the other options have specific use cases, shortcomings, or aren't
widely supported.

Feross Aboukhadijeh, an open-source developer who runs Socket, on Monday said that
the bug prevented his firm's web-based file transfer app Wormhole from working when
initially loaded until a workaround was implemented.

"Opening an IndexedDB database fails 100 per cent of the time on the first try," he said

via Twittar "If voiil refrech it etarte workina "



[BUG] drawlmage doesn't work with WebM files #20489

© Open

(02

warrenseine opened this issue on Jan 30 - 2 comments

warrenseine commented on Jan 30

Context:

Playwright Version: 1.31.0-alpha-jan-29-2023
Operating System: macOS 13.2

Node.js version: 16.17
Browser: WebKit 1783

Code Snippet
See repo: https://github.com/warrenseine/playwright-webm-test
Describe the bug

Following the resolution of #18423, | wanted to test my use case of copying WebM frames to a canvas, using
Canvas.drawImage() . Unfortunately, it won't work with WebM video under the most recent Playwright WebKit version. It
works fine with Safari, Playwright Chromium, Playwright Firefox.

Here is a demo of the bug that you can reproduce in WebKit: https://warrenseine.github.io/playwright-webm-test/

While playback now works fine with WebKit, you can see that drawing frames to a canvas from an MP4 video works, but it
doesn't with WebM.

®



H microsoft / playwright  public ® Watch ¢

<

<> Code () Issues 754 19 Pull requests 28 () Discussions () Actions () Security |~ Insights

[BUG] SharedArrayBuffer should work in WebKit #1404 3
yury-s opened this issue on May 9, 2022 - 4 comments

g yury-s commented on May 9, 2022 Member

This popped up in #13976, SharedArrayBuffer was reenabled in Safari https://webkit.org/blog/12140/new-webkit-features-
in-safari-15-2/ but we disabled COOP handling in #9185 as it broke some other functionality in WebKit. We should
reenable COOP to match Safari and make SharedArrayBuffer work.

®) (& 2



Real mobile
browsers

VS
simulated browsers



Real mobile browsers vs simulated browsers

e Covid-19 saw the boom of mobile usage across the globe
e (Getting all the mobile devices is expensive

e Mobile development is hard... but thanks to browser devtools it’s not so
hard



Real mobile browsers vs simulated browsers

e Mobile development is hard... but thanks to browser devtools it's not so
hard

ORISIT..



Real mobile browsers vs simulated browsers

e Resizing a desktop browser is NOT a mobile...



[BUG] reports the wrong devicePixelRatio #20111
greggman opened this issue on Jan 13 - 4 comments

’ 2= \ greggman commented on Jan 13

Context:

Playwright Version: 1.29.2

Operating System: Mac
e Node.js version: 16.17.0

Browser: Chrome

o Extra: Make sure you're on DPR > 1 device This is true for most Macs but might not be if you're using an external
monitor

Code Snippet
follow the docs for a setup with npm init playwright@latest
in playwright.config.js add use: { headless: true, ...

replace example.spec.js with

// @ts—-check
const { test, expect } = require('@playwright/test');

test('test dpr', async ({ page }) => {
await page.goto('data:text/html,<div id="d" style="display: inline-block;">foo</div>"');
await page.waitForLoadState('networkidle');



Risk Management



Q&A



Thank youl!

David Burns - @AutomatedTester



