
Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Selenium Grid Deployment Alternatives:
Scaling and Adding Video Recording
Without Container Orchestration

Eric Frankenberger

Sr. DevOps Engineer, Genesys
3/29/2023

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

About me

• 2014 – 2021: Chip Ganassi Racing
• Sysadmin and pit crew member
• 9x Indy 500’s
• 3x 24 hour of LeMans
• 5x 24 hours of Daytona

• 2021 – Present: Genesys
• Sr. DevOps Engineer
• Selenium Grid maintainer

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Alternative Grid Deployments

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Alternative Grid Deployments

• > 15,000 tests/day

• Dynamic video recording

• Per-test node logs

• Autoscaling

• CI/CD compliant

• Without container orchestration
• Docker Swarm
• Kubernetes

Requirements

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Alternative Grid Deployments

• Docker Selenium is robust, mature, and proven

• Dynamic grid can do everything already

Why?

HOWEVER

• I can’t use
• Docker Swarm
• Kubernetes

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Alternative Grid Deployments

• Outside of Dynamic Grid, there is no official support for
• Video recording
• Autoscaling

• Eric had to come up with a way to do
• Video recording
• Autoscaling

So?

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Alternative Grid Deployments

By seeing the inner workings of an alternative

grid deployment, your understanding of

Selenium as a whole will improve.

So?

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

the grid

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Plan of Attack

• Solutions discussed are largely agnostic to:
• Cloud providers
• Hardware architecture
• Programming languages

• To be treated as descriptions of techniques

The ground work

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Plan of Attack

• Stand up a fully distributed grid
• Distributor with event bus
• Router
• Session map
• New session queue

Setting up the grid

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

The Grid
VM 1: Router

VM 2: distributor

vm 3: session map

vm 4: session queue

java –jar selenium-server-<version>.jar router

java –jar selenium-server-<version>.jar sessionqueue

java –jar selenium-server-<version>.jar distributor \
--bind-bus true

java –jar selenium-server-<version>.jar sessions

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

The Grid

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Making the grid communicate

New session queue

Session map

Distributor

Router needs

New session queue

Session map

Distributor needs

Event bus

Session map needs Session queue needs

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Making the grid communicate
java -Dwebdriver.http.factory=jdk-http-client \
-jar selenium4.jar \
--ext selenium-http-jdk-client-4.7.1.jar \
router \
--sessions http://$sessions:5556 \
--sessionqueue http://$sessionqueue:5559 \
--distributor http://$distributor:5553 \
--log /var/log/seleniumRouterLogs.log \
--log-level INFO

Router
java -Dwebdriver.http.factory=jdk-http-client \
-jar selenium4.jar \
--ext selenium-http-jdk-client-4.7.1.jar \
distributor \
--sessions http://$sessions:5556 \
--sessionqueue http://$sessionqueue:5559 \
--bind-bus true \
--healthcheck-interval 120 \
--log /var/log/distributorControllerLogs.log \
--log-level INFO

java -Dwebdriver.http.factory=jdk-http-client \
-jar selenium4.jar \
--ext selenium-http-jdk-client-4.7.1.jar \
sessions \
--publish-events tcp://$distributor:4442 \
--subscribe-events tcp://$distributor:4443 \
--log /var/log/seleniumSmapLogs.log \
--log-level INFO

session map
java -Dwebdriver.http.factory=jdk-http-client \
-jar selenium4.jar \
--ext selenium-http-jdk-client-4.7.1.jar \
sessionqueue \
--session-request-timeout 290 \
--session-retry-interval 3 \
--log /var/log/inin/seleniumSqueueLogs.log \
--log-level INFO

Distributor

new session queue

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Making the grid communicate

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Self Healing

Pros

• Easy failover

• Simplest method

Cons

• Only one instance of each
component can be active

• local DNS caching can lead to long
failover times

DNS Name

Pros

• Easy failover

• Healthchecks can boot failed
components

Cons

• Tooling dependent

• Can cause extra work if not
automated

Load balancer

Pros

• Direct access to component

• Failover as soon as new
component is active

Cons

• Requires component’s Selenium
process to be restarted

• Reinventing DNS

• Multiple scripts required to
orchestrate

• External data stores needed

• Restarting components results in

IP Address

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Self Healing

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Register a single node

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Registering a single node

java -jar selenium4.jar node \

--grid-url $router \

--detect-drivers true \

--publish-events tcp://$distributor:4442 \

--subscribe-events tcp://$distributor:4443 \

--log /home/selenium4/log-node.txt"

Launch Command

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Registering a single node - notes

--detect-drivers true \

• If set to false, node will never send a registration event

• At least one browser + browser driver should be installed

Other concerns

• Make sure the rest of the grid is talking

• If components aren’t talking to one another properly, registration will not occur

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

cv

Registering a single node

cv

cv

cv

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Building features on our nodes
Utilizing Docker Selenium

Running 1 test per node

Reusing nodes

Video recording

Scaling

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Utilizing docker selenium

I THOUGHT YOU SAID WE
WEREN’T USING DOCKER

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Utilizing docker selenium

I SAID DOCKER SWARM

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Utilizing docker selenium
Instead of having to:

• download browser(s)
• download browser driver(s)
• download selenium
• download vnc
• download FFMPEG
• script and install browsers
• script and install browser drivers
• script and run selenium
• script and run vnc
• script and run FFMPEG
• configure XVFB on node
• script FFMPEG to XVFB connection
• AND MORE

We do this

• docker run selenium/node-chrome
• docker run selenium/video

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Utilizing docker selenium

docker run \
-d \
-p 5555:5555 \
-p 5900:5900 \
-e SE_DRAIN_AFTER_SESSION_COUNT=1 \
-e SE_EVENT_BUS_PUBLISH_PORT=4442 \
-e SE_EVENT_BUS_SUBSCRIBE_PORT=4443 \
-e SE_NODE_SESSION_TIMEOUT=600 \
-e SE_NODE_HOST=$machineIP \
-e SE_SCREEN_WIDTH=$width \
-e SE_SCREEN_HEIGHT=$height \
-e SE_OPTS="--log-level CONFIG" \
--name node \
--net grid \
--shm-size="2g" \
selenium4/node
docker logs -f node &> /var/log/node-`date +"%d_%T"`.log &

docker run \
-d \
-p 9000:9000 \
-e SE_SCREEN_WIDTH=$width \
-e SE_SCREEN_HEIGHT=$height \
--name video \
--net grid \
--shm-size="2g" \
selenium4/video
docker logs -f video &>
/var/log/video-`date +"%d_%T"`.log &

Node launch command Video launch command

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Utilizing docker selenium

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Building features on our nodes
Utilizing Docker Selenium

Running 1 test per node

Reusing node hosts

Video recording

Scaling

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

1 test per node

Why?

• Sterile test environment

• Makes video recording a little easier

• Cattle not pets

How?

• -e SE_DRAIN_AFTER_SESSION_COUNT=1
• -–drain-after-session-count 1

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Reusing nodes

• When node is drained, container is killed after test

• Without reuse logic, entire VMs need to be relaunched

• Very wasteful and inefficient

• We already have a sterile environment with containers

• Let’s reuse them!

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Reusing nodes

But how?

• ITS EASY

• IT’S ONLY LIKE 13 LINES OF CODE

The Script

• Run a loop that checks if node and video containers are running

• if they are, no action

• if they aren’t, run the bash script that launches the nodes

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Reusing nodes – the code
client = docker.from_env()
containers = ['video', 'node’]

while True:
running_containers = []
for container in client.containers.list():

if container.name in containers:
running_containers.append(container.name)

if set(containers).issubset(set(running_containers)):
print('Containers are running, no action taken’)

else:
print('Containers are not running, launching’)
for container in containers:

if container not in running_containers:
client.containers.run(container, detach=True)

time.sleep(5)

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Building features on our nodes
Utilizing Docker Selenium

Running 1 test per node

Reusing nodes

Video recording

Scaling

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Video recording

Out of the box:*
• Video container connects to Node
• Records the lifetime of the container
• Names the file video.mp4
• May or may not crash

What I need:
• Video container connects to Node
• Records only while test runs
• Make a unique file per test
• Names the file $sessionId.mp4
• Upload to remote storage
• Terminate the container on completion

*this is not a shortcoming of Docker Selenium

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Video recording

But how?
• Utilize existing Docker Selenium video recording container
• Write a script to replace video.sh
• Connect to node’s XVFB
• Query it’s API
• Start and stop video
• Upload or move the video
• Terminate the container upon completion

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Video recording

Doesn’t this only fulfill a narrow use case?
• no
• The principle and scripting are very simple
• FFMPEG can be ran on the node itself
• Upload to cloud component can be adapted to anything
• At its base, this is nothing more than a technique

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Video recording

OK WELL HOW DOES IT WORK

Video containers are launched 1:1 with nodes

Video container’s script gets 3 variables, set by querying node API
• SESSION_ID
• PRE_SESSION -initialized to True
• RUNNING_TEST -initialized to False

These 3 combined are enough to set up our entire operation

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

video recording

IF

• SESSION_ID is not None

THEN

• set PRE_SESSION to False

• set RUNNING_TEST to True

AND

• Start FFMPEG

• begin recording, video name =
SESSION_ID

IF

• SESSION_ID is None

• PRE_SESSION is True

• RUNNING_TEST is False

AND

• FFMPEG can connect to Node

THEN

• Hang out for a bit

IF

• SESSION_ID is None

• PRE_SESSION is False

THEN

• Set RUNNING_TEST to False

AND

• stop recording

• upload file to s3

• terminate container

Every 1 second, in a loop:

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Building features on our nodes
Utilizing Docker Selenium

Running 1 test per node

Reusing nodes

Video recording

Scaling

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Scaling

Get the data first. Every 3 seconds:

Query the router

ROUTER_QUERY =
requests.get("http://127.0.0.1:4444/status", timeout=1).json()

Query the session queue

QUEUE_QUERY =
requests.get("http://127.0.0.1:4444/se/grid/newsessionqueue/queue",
timeout=1).json()

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Scaling - node data

Get total nodes
len(ROUTER_QUERY['value']['nodes'])

Get used nodes
for nodes in ROUTER_QUERY['value']['nodes’]:

for slots in nodes['slots’]:
if slots['session'] is not None:

used_count += 1

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Scaling – Queue data

Get sessions in queue
for items in QUEUE_QUERY:

if items is not None:
queue_count += 1

else:
queue_count = 0

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Scaling – Other data

Set node buffer
NODE_BUFFER = 10

Define scale up and scale down times
SCALE_UP_TIME = 30 //seconds
SCALE_DOWN_TIME = 60 //seconds

Define query interval
QUERY_INTERVAL = 3 //seconds

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Scaling – USING THE DATA

Now we have all the data, how do we use it?
Every 3 seconds:
• Query router
• Query session queue

if queue = 0
proposed_desired = used_nodes + node_buffer

if queue > 1
proposed_desired = used_nodes + node_buffer + queue

return proposed_desired

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Scaling – events

Every 30 seconds
• if proposed_desired > reported_desired

• scale_up(proposed_desired)

Every 60 seconds
• if proposed_desired < reported_desired

• incremental_scale_down(proposed_desired)

Every 3 seconds
• if queue > 0

• scale_up(proposed_desired)

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Building features on our nodes
Utilizing Docker Selenium BONUS FEATURE!!!!

Running 1 test per node MULTIPLE BROWSERS PER NODE

Reusing nodes

Video recording

Scaling

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

MULTIPLE BROWSERS PER NODE

With video recording, nodes only run 1 test at a time

Instead of having a group of nodes for
• Chrome tests
• Firefox tests
• Edge tests

Let’s make a single set of nodes with
• Chrome, Edge, and Firefox!

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

MULTIPLE BROWSERS PER NODE
Step 1 - Combine the Docker Selenium dockerfiles

From NodeChrome:

• Chrome Launch Script Wrapper section
• Chrome webdriver section
• wrap_chrome_binary file

From NodeFirefox:

• GeckoDriver section

From NodeEdge:

• Edge Launch Script Wrapper section
• Edge webdriver section
• wrap_edge_binary file

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

MULTIPLE BROWSERS PER NODE
Step 2 – Modify the dockerfile to echo the correct browser_name
• RUN echo "chrome,firefox,edge" > /opt/selenium/browser_name

[[node.driver-configuration]]
display-name = "chrome"
stereotype = '{"browserName": "chrome", "browserVersion": "110.0", "platformName": "Linux"}'
max-sessions = 1

[[node.driver-configuration]]
display-name = "firefox"
stereotype = '{"browserName": "firefox", "browserVersion": "110.0", "platformName": "Linux"}'
max-sessions = 1

[[node.driver-configuration]]
display-name = "edge"
stereotype = '{"browserName": "MicrosoftEdge", "browserVersion": "110.0", "platformName": "Linux"}'
max-sessions = 1

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

MULTIPLE BROWSERS PER NODE
Step 3 – combine generate_config

elif [["${SE_NODE_BROWSER_NAME}" == "chrome,firefox,edge"]]; then
SE_NODE_STEREOTYPE_CHROME="{\"browserName\": \"${SE_NODE_BROWSER_NAME_CHROME}\", \"browserVersion\":\"${SE_NODE_BROWSER_VERSION_CHROME}\",
\"platformName\": \"Linux\"}"

SE_NODE_STEREOTYPE_FIREFOX="{\"browserName\": \"${SE_NODE_BROWSER_NAME_FIREFOX}\", \"browserVersion\": \"${SE_NODE_BROWSER_VERSION_FIREFOX}\",
\"platformName\": \"Linux\"}"

SE_NODE_STEREOTYPE_EDGE="{\"browserName\": \"${SE_NODE_BROWSER_NAME_EDGE}\", \"browserVersion\": \"${SE_NODE_BROWSER_VERSION_EDGE}\", \"platformName\":
\"Linux\"}”

echo "[[node.driver-configuration]]" >> "$FILENAME”
echo "display-name = \"chrome\"" >> "$FILENAME”
echo "stereotype = '${SE_NODE_STEREOTYPE_CHROME}'" >> "$FILENAME”
echo "max-sessions = ${SE_NODE_MAX_SESSIONS}" >> "$FILENAME"

echo "[[node.driver-configuration]]" >> "$FILENAME”
echo "display-name = \"firefox\"" >> "$FILENAME”
echo "stereotype = '${SE_NODE_STEREOTYPE_FIREFOX}'" >> "$FILENAME”
echo "max-sessions = ${SE_NODE_MAX_SESSIONS}" >> "$FILENAME"

echo "[[node.driver-configuration]]" >> "$FILENAME”
echo "display-name = \"edge\"" >> "$FILENAME”
echo "stereotype = '${SE_NODE_STEREOTYPE_EDGE}'" >> "$FILENAME”
echo "max-sessions = ${SE_NODE_MAX_SESSIONS}" >> "$FILENAME"

• Copy SE_NODE_STEREOTYPE for each browser type
• Copy section that writes to config.toml for each browser type

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

MULTIPLE BROWSERS PER NODE
Step 4 – Run your container!

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Let’s have a chat.

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

having a chat

Our grid is now:
• Deployed
• Self healing
• Scalable
• Capable of video recording
• CICD compliant

That means we’re finished, right????
• Maybe
• It depends

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

COMMON COMPLICATIONS

Out of the box
• Queueing just works

The complications come from
• Tests being run from automation tools
• Cloud based load balancers
• Built in Selenium timeouts
• Testing frameworks
• Other hidden timeouts that you find out about months into development

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Common complications
Timeouts

ZOMBIE NODES

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Timeouts and queueing

Timeouts internal to Selenium
• –session-request-timeout on new session queue
• Defaults to 300
• I set it to 290

• --session-timeout on node
• Defaults to 300
• I set it to 600

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Timeouts and queueing

Timeouts external to Selenium

Load balancers
• AWS ELB/ALB, GCP Cloud Load Balancing, Azure Load Balancer
• 30-60 second default timeouts
• I changed to 350 seconds

Others
• Internal timeouts
• Frameworks
• CI/CD tooling
• Retry logic

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Timeouts and queueing

“These things all seem kinda simple”

“There’s only a couple of them”

“What’s the big deal”

”Who cares if a node gets tied up for a bit”

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Common complications
Timeouts

ZOMBIE NODES

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

zombie nodes

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Zombie nodes

Occurs when:

• Test enters queue
• Test is abandoned before –session-request-timeout
• Test remains in queue
• Node becomes available
• Abandoned test takes a node
• Node is a ZOMBIE for duration of --session-timeout

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Zombie nodes

How can this play out?
Assuming 3x retry after 60s logic is in place:

• Grid is at capacity
• Test comes in, is abandoned before it gets a node
• Test retries, fails
• Test retries, fails
• Test retries, fails

In 4 minutes, 1 test made 4 zombie nodes
As more tests come in, grid is rendered useless

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Zombie nodes

So what do we do?

• Identify all timeouts that may affect you
• If unsure, note the elapsed time between failures
• Make sure to set them in a responsible manner
• --session-request-timeout is always less than:
• Load balancer timeout
• Framework timeouts
• Job timeouts
• etc

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Zombie nodes

Take a deep breath

Genesys confidential and proprietary information. Unauthorized disclosure is prohibited.

Q&A

