|[dentitying Code Smells

Selenium Conference 2023

softwaretester.blog | Benjamin Bischoff

About me

® Benjamin Bischoft

® Jest Automation Engineer @ trivago N.V.
® 23yearsinlTl

® | ast 3 yearsintesting

softwaretester.blog | Benjamin Bischoft

Disclaimer

® This is only about identification

® | ots of code

e All Java

softwaretester.blog | Benjamin Bischoff

Smelly Code

P Smelly code, smelly code
- - How are they treating you?
\ = — =
, Lo Smelly code, emelly code

[t'2 not your fault.

softwaretester.blog | Benjamin Bischoff

“Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.”

—M. Fowler (1999)

The term R EFACTORING

wving the Design of [.‘Q\'?%L’ii}g Code

Martin Fowler

with contributions by

Kent Beck

softwaretester.blog | Benjamin Bischoff

,A code smell is a surface indication that usually
corresponds to a deeper problem in the system."

-Martin Fowler

softwaretester.blog | Benjamin Bischoff

Why should you care?

® Communication
Speak a common language

® Better code
Clean code principles and design patterns

® Testability

estable code is maintainable codel!

softwaretester.blog | Benjamin Bischoff

TAXONOMY OF
CODE SMELLS

Mika V. Mantyla & Casper Lassenius,
Helsinki University of Technology

softwaretester.blog | Benjamin Bischoff

Empirical Software Evolvability —
Code Smells and Human Evaluations

Mika V. Mintyla
SoberIT, Department of Computer Science
School of Science and Technology, Aalto University
P.O. Box 19210, FI-00760 Aalto, Finland
mika mantyla@tkk.fi

Abstract—Low software evolvability may increase costs of
software development for over 30%. In practice, human
evaluations and discoveries of software evolvability dictate the
actions taken to improve the software evolvability, but the human
side has often been ignored in prior research. This dissertation
synopsis proposes a new group of code smells called the solution
approach, which is based on a study of 563 evolvability issues
found in industrial and student code reviews. Solution approach
issues require re-thinking of the existing implementation rather
than just reorganizing the code through refactoring. This work
also contributes to the body of knowledge about software quality
assurance practices by confirming that 75% of defects found in
code reviews affect software evolvability rather than
functionality. We also found evidence indicating that context-
specific demographics, i.e., role in organization and code
ownership, affect evolvability evaluations, but general
demographics, i.e., work experience and education, do not

Keywords-Doctoral dissertation synopsis; code smells; empirical
study; code review; human evaluation; software maintainability;

I. INTRODUCTION

Software evolution 1s the process of developing the initial
version of software and the further development of that initial
version to reflect the growing and changing needs of various
stakeholders. It has been long recognized that almost all large
and successful software systems and products need continuous
evolution. Brooks [1] stated that “The product over which one
has labored so long appears to be obsolete upon (or before)
completion. Already colleagues and competitors are in a hot
pursuit of new and better ideas.”

This study is about software evolvability, a quality attribute
that reflects how easy software is to understand, modify, adapt,
correct, and develop further. Empirical studies [2-4] have found
that the added effort due to lack of evolvability vanies between
25-36%. Although software evolvability has been studied
extensively, the human evaluation of software evolvability has
received considerably less attention. In addition, the types of
evolvability issues found in-vivo have been mostly ignored
while the focus is on evolvability criteria proposed by experts,
e.g., design principles [5] and code smells [6].

This doctoral dissertation synopsis presents empirical
research on code-level evolvability 1ssues, 1.¢., code smells, and
human evaluations of them. This work involves two research

arcas. First, it looks at types of software evolvability issues
found in industrial and student settings. Furthermore, a
classification was created based on the empirically discovered
evolvability issues and the code smells presented in the
literature. Second, this 1s a study of human evaluations of
software evolvability using student experiments and industrial
surveys. This paper 1s organized as follows. Section 2 positions
the work and outlines the main concepts in the research space.
Section 3 presents the research questions and methods. Next,
answers to research questions are provided in Section 4.
Finally, Section 5 provides the conclusions and outlines
directions for further work.

II. DISSERTATION RESEARCH SPACE

Figure 1 illustrates the topics covered in the literature
review of the thesis overview [7] and shows how our research
questions link to the relevant topics (research questions are
presented in Section 3). Software evolvability can be
operationalized with software evolvability criteria, which have
been largely created based on expert opinions rather than
empirical research of software systems. Furthermore, software
evolvability 1ssues, which are a subset of software evolvability
criteria, have been studied less than the design principles,
which are also a subset of software evolvability criteria. Thus,
the dissertation first focuses on increasing understanding about
the human-identified evolvability issues through empirical
studies. We believe that this work can lead to improved
software evolvability criteria, which can then increase the
benefits of applying these criteria. The only study that the
author i1s aware of that focused on evolvability issues detected
in-vivo by humans was [8] that studied the types of evolvability
issues identified in code reviews. Even that study did not
contain a detailed analysis of the evolvability 1ssues found.

The second research area of this study, human evaluations
of software evolvability, was chosen because human evaluation
plays a key role in software evolvability improvement. For
example, if an individual does not recognize or consider a
certain evolvability 1ssue to be a problem, then that individual
1s not likely to remove this problematic issue from the
software. Therefore, differences in human evaluations can lead
to differences in evolvability. Furthermore, this area has not
been properly investigated. For example, little knowledge was
available for assessing the reliability of the human evaluations.

Classification

Bloaters

OQOP
Abusers

Change
Preventers

Dispensables

Couplers

Long Method
Large Class

Primitive
Obsession

Long Parameter
List

Data Clumps

Switch Statements

Temporary
Field

Refused
Bequest

Alternative classes
with different
Interfaces

Divergent Change
Shotgun Surgery

Parallel Inheritance
Hierarchy

Lazy Class
Data Class
Duplicate Code

Dead Code

Speculative
Generality

Feature Envy

Inappropriate
Intimacy

Message Chains

Middleman

softwaretester.blog | Benjamin Bischoff

Bloaters

Too large to handle

softwaretester.blog | Benjamin Bischoft

Bloaters Long Method

public class WebShop {

private final List<Customer> customers = new ArrayList<>();

Ellediife Sieaiine sievice @lisiteome s (iaimiall @ s e o= ells Home s |

customers.add (customer) ;

aeE e e el IEoeee |

O

"We have a new customer called 3",

A method that does
too much

customer.name ()) ;

softwaretester.blog | Benjamin Bischoff

public class ShoppingCart

jelblielialie
el @

jelbllellislie

ieiblellaiie

jobllg) lLale

VI@LE)
VAOLG
VAOHL O
L €l

W@k el

Bloaters Large Class

sclelZizorcibiee (= uae il I2eoeie e jonoditiee) |

sEgew e RireoeiticE (Eahactll Bieoeibier joreeitier)

elic@ @l ()

SinceeVoucherCode)]

contactsuooort ()

1}

softwaretester.blog | Benjamin Bischoff

A class that does too

much

Bloaters Primitive Obsession

record Customer (
String name,
int age,
String street,
String city,
Lgle . miljolCoeE

String country

Favouring primitive

data types

softwaretester.blog | Benjamin Bischoff

Bloaters Long Parameter List

public class CadTool {
public static void main (String[] args)
int result =

CadTool .[edlfeti=isceRe sullis (8 @ alilicle’ s valle sl w00 ;

publlic static i1nt calculateResult(final 1nt baseValue,

final boolean 1i1sMetric,

Too many method

fanal koellecan 12

parameters
Elmal s nne oFfccl,
12 Liglz dl lghieEreehs alsmiofauell o

return 0; // some calculation

softwaretester.blog | Benjamin Bischoff

Bloaters Data Clumps

record Customer (
Srielng LaseNemeE
Seoeibing oEaLiesENEmE
String middleName,
Stirle; Sellticele o,

String streetAddress,

Shcaeabnler CaliE .
SEELRG sitate

Grouping unrelated
data

SEE Liae] ot E Y,
boolean i1isEmployed,

eoollezin LablomeOnwneit

softwaretester.blog | Benjamin Bischoff

OOP Abusers

Missing object-oriented design possibilities.

softwaretester.blog | Benjamin Bischoft

OOP Abusers Switch Statements

public class Vehicles {
public i1nt numberOfWheels (final String vehicle)

throws Exception {

return switch (vehicle) {

@ase earh =

@asc theE =1

case "bike" -> 2: .
Branching out too

@ascl Yhilevielichicar 0

much
default -> throw new Exception ("Unknown") ;

s

softwaretester.blog | Benjamin Bischoff

OOP Abusers Temporary Field

public class Rectangle {
private float sideA;

private float sideB;

\ ..‘.\\.

NN\

Z
=
Z

public void setSideA(float sideA) {

.

Elgle s Salelei = Salele i

,"\\ N
&>

Fields that are only
eleliline hwenlel geEbneEeR Eiles e e
used once
this.si1deB = sideB;

pulclie douvlole gethreasize () |

EeiiEn Silecell & ShiecdelR:

softwaretester.blog | Benjamin Bischoff

OOP Abusers Refused Bequest

public class Animals {

interface Animal { void speak(); }

siEakiler ¢lias s Bee melicme nits AmaimsEles]
dOverride

pllodiie wolel specll) |

Shvfs B, ©blE - one hgte ey (e E L o

Passing unneeded

behaviour to classes

Stavie elass Eadlh impllemcimie s R e el
@Override

pulglie vole seeecl) |
J

softwaretester.blog | Benjamin Bischoff

OOP Abusers Different Interfaces

publlic class Shapes {
Eec@ord @lrelc (Ellean madilus)
public double getAreaSize () {

BeR bR Fadills ¢ raeiitls leeh Pl

peeerd Reevangle (Fleak &, il eoals (9

Confusing naming of

plileliire dolllslic e b SliEEace Silze () A .
similar functions

BeEBER I 0 o

softwaretester.blog | Benjamin Bischoff

i\

N

=
&

»

- O
“ Dl

~ -

e

Change Preventers

Hindering further development.

softwaretester.blog | Benjamin Bischoff

Change Preventers Divergent Change

public class AnimalInformation {
joibllelil e isezlisalie Sz liolop efeie B bgillcige (Catalcill Siehaal aier clgabiel i |
1f (animal.equalsIgnoreCase ("horse"))
eEEblain s lEebibls @clest i Itule s

e et e

eulgllile secueilic slae eeENbileE e CElleris (e Linellh s Sieasalaiep ughibngell)l |

Changes across

ik l=inaem cllic el s il @lee Gais e (s @le < e 18 o)
methods
return 4;

return -1;

softwaretester.blog | Benjamin Bischoff

Change Preventers Shotgun Surgery

Bl ile ialliciss T@ lia oiliisie ol ihein]
plEllile =t okiie s Sicine e tlhamanName (Famna il s i amies eoimal el 108 e
1f (animal.equalsIgnoreCase ("horse™))
return "Equus caballus";

return "";

Changes across

Eitileiilfctellicicic M= olclh At =lutvis i |
. | classes
Qo] L@ el Lo Lae geehNbimosrOribags (flme L S lne emaumell)
1f (animal.equalsIgnoreCase ("horse™))
return 4;

return -1;

softwaretester.blog | Benjamin Bischoff

Change Preventers Parallel Hierarchy

public class Birds {
oilvelee Secledlie ellleisis 2aleel

QlelvelcE Srelcile @llees Bere il

BlElVeasc sEatlie el sl b leon e Ecnicl=l Bal ael

eieahviciee Siezheiseiidieier - LEhvadieior () |

return new SparrowEgg();

Implementing

parallel intertaces

private static class SparrowEgg extends Egg {

J

softwaretester.blog | Benjamin Bischoff

Dispensables

Unnecessary things that can be removed.

softwaretester.blog | Benjamin Bischoft

Dispensables Lazy Class

public class WebShopCheckOut ({
iotledlliel Secleitie Wionel elhlseld@ibie itz L Slaeeenleicl@ia e @chge)l

(0 Beme el e enis e aomn

record ShoppingCart (Product... products) {
}

A class with a single
method

record Product (String id) {
}

softwaretester.blog | Benjamin Bischoff

Dispensables Data Class

public class DataClass {

record Rectangle (int sideA, 1int sideB) {

J

public static void main(String[] args)
Rectangle rectangle = new Rectangle (5, 20);
int rectangleArea = rectangle.sideA * rectangle.sideB;

Class holding data
but not its own logic

softwaretester.blog | Benjamin Bischoff

Dispensables Duplicate Code

public class Customers {

private List<Customer> customers;

public void addCustomer (Customer customer) {
customers.add (customer) ;

clblsiceiee S BenciTei@lal ((Sisieen ; @bhie 5 5 johealane dhial)|

The same code

public void removeCustomer (Customer customer) { : :
multiple times
customers.remove (customer) ;

clllseeer sl ForBelela (/s e 5 OblE & B iohea iaue gl ¢

softwaretester.blog | Benjamin Bischoff

Dispensables Dead Code

public class DeadCode {
public static void main (String[] args)

SyskEemelis omanE il niEiRe s B Magsia il BRI -

oL velte coulole el () |
e ELiniel o L dLS 07

Sy Eel eliE o e (R Hs e e o Rt

Code that cannot be
reached

softwaretester.blog | Benjamin Bischoff

Dispensables Speculative Generality

B oS g « g
-4 ' a-"n d

public class LaserPrinter i1mplements Printer {
@Override
eolallaie woncl qemedimie (tanectll Sacieilnle; EesE MO ae)) |

// Implementation

@Override
tliollae el clienOmOnsiOrie ()

Premature future-
//Implementation

proofing

interface Printer /{
Ve lel eietniE S i a e s e ille Piai e 1
ioaLel Ebem@in@CieC@hsiE () -

softwaretester.blog | Benjamin Bischoff

Couplers

Too much or too little coupling.

softwaretester.blog | Benjamin Bischoff

Couplers Feature Envy

public class UsersAndAddresses {
record User (Address address) {
Bllcliife i line gic Biidediacis s IS imaimier () =
16 S e eI
dddress . cskreciE () 0

T addregs el o

i+ aclelress coUntiEey ()

Class implementing

features of another

g =leloiael Nelohse Sisl (Snmiailgle]. Seie=Eie. v iSieaaligle] ehlimyy - Sreiealiglel fe@ibigie eyl al

softwaretester.blog | Benjamin Bischoff

Couplers Inappropriate Intimacy

Bl erellasis i Boc kil |
private final String title;

pPEilvVaEe ket abEheis;

public Book(String title) { this.title = title;}
public void setAuthor (Author author) { this.author = author; }

Classes knowing

Pl siet el =it Vi hiomgs | i R [
each other too we
private final String name;

iSigibvchiee Blolele 1ololels

public Author (String name) { this.name = name; }

public void setBook (Book book) { this.book = book; }

softwaretester.blog | Benjamin Bischoff

Couplers Message Chains

public class Storehouse {
public static void main (String[] args)

List<Product> products = List.of (
new Product ("Cheese", "Tasty cheese"));
List<Shelf> shelves = List.of (new Shelf (products));

Sucianligie] SCISiSichimionE henl —
shelves.get (0) .products () .get (0) .description() ;

} Returning objects

record Shelf (List<Product> products) { } thatreturﬂ<3tﬂeCiSu.
record Product (String name, String description) { }

softwaretester.blog | Benjamin Bischoff

Dispensables Middle Man

public record Customer (String name, Address address) {

jeledinlie SSiETe L nier refene(@ i [|
e lhiian slddpesis ey ()

J

ollolile Sickilng gecstrecr ()
return address.street () ;

J

EceonrdiAddress (St PR shEceisr s & WEine ety] Class accessing

another one on its

behalt

softwaretester.blog | Benjamin Bischoff

Classification

Bloaters

OQOP
Abusers

Change
Preventers

Dispensables

Couplers

Long Method
Large Class

Primitive
Obsession

Long Parameter
List

Data Clumps

Switch Statements

Temporary
Field

Refused
Bequest

Alternative classes
with different
Interfaces

Divergent Change
Shotgun Surgery

Parallel Inheritance
Hierarchy

Lazy Class
Data Class
Duplicate Code

Dead Code

Speculative
Generality

Feature Envy

Inappropriate
Intimacy

Message Chains

Middleman

softwaretester.blog | Benjamin Bischoff

Example Code

github.com/bischoffdev/code-smells

softwaretester.blog | Benjamin Bischoff

When to tackle code smells?

softwaretester.blog | Benjamin Bischoff

Broken window

Long-term effects of unfixed
code.

softwaretester.blog | Benjamin Bischoff

G\

YAGN|

Wasting time with future
requirements.

softwaretester.blog | Benjamin Bischoff

Campground Rule

Later never comes...

e S,

softwaretester.blog | Benjamin Bischoff

Code Reviews

Point out smells before it is too
late!

softwaretester.blog | Benjamin Bischoff

Smelly Code

P Smelly code, smelly code
- - How are they treating you?
\ = — =
, Lo Smelly code, emelly code

[t'2 not your fault.

softwaretester.blog | Benjamin Bischoff

Thank you!

softwaretester.blog | Benjamin Bischoff

